Shortcuts

Source code for slideflow.biscuit.hp

"""Hyperparameters associated with the published manuscript."""

import slideflow as sf


[docs]def nature2022(): """Hyperparameters used in the associated manuscript. Dolezal, J.M., Srisuwananukorn, A., Karpeyev, D. et al. Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology. Nat Commun 13, 6572 (2022). https://doi.org/10.1038/s41467-022-34025-x Returns: ``sf.ModelParams`` """ if sf.backend() == 'tensorflow': loss = 'sparse_categorical_crossentropy' else: loss = 'CrossEntropy' return sf.ModelParams( model='xception', tile_px=299, tile_um=302, batch_size=128, epochs=[1], # epochs 1, 3, 5, 10 used for initial sweep early_stop=True, early_stop_method='accuracy', dropout=0.1, uq=False, # to be enabled in separate sub-experiments hidden_layer_width=1024, optimizer='Adam', learning_rate=0.0001, learning_rate_decay_steps=512, learning_rate_decay=0.98, loss=loss, normalizer='reinhard_fast', include_top=False, hidden_layers=2, pooling='avg', augment='xyrjb' )