Source code for slideflow.biscuit.hp
"""Hyperparameters associated with the published manuscript."""
import slideflow as sf
[docs]def nature2022():
"""Hyperparameters used in the associated manuscript.
Dolezal, J.M., Srisuwananukorn, A., Karpeyev, D. et al.
Uncertainty-informed deep learning models enable high-confidence
predictions for digital histopathology. Nat Commun 13, 6572 (2022).
https://doi.org/10.1038/s41467-022-34025-x
Returns:
``sf.ModelParams``
"""
if sf.backend() == 'tensorflow':
loss = 'sparse_categorical_crossentropy'
else:
loss = 'CrossEntropy'
return sf.ModelParams(
model='xception',
tile_px=299,
tile_um=302,
batch_size=128,
epochs=[1], # epochs 1, 3, 5, 10 used for initial sweep
early_stop=True,
early_stop_method='accuracy',
dropout=0.1,
uq=False, # to be enabled in separate sub-experiments
hidden_layer_width=1024,
optimizer='Adam',
learning_rate=0.0001,
learning_rate_decay_steps=512,
learning_rate_decay=0.98,
loss=loss,
normalizer='reinhard_fast',
include_top=False,
hidden_layers=2,
pooling='avg',
augment='xyrjb'
)